skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nelson, ed., Karen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Neuromorphic computing mimics the organizational principles of the brain in its quest to replicate the brain’s intellectual abilities. An impressive ability of the brain is its adaptive intelligence, which allows the brain to regulate its functions “on the fly” to cope with myriad and ever-changing situations. In particular, the brain displays three adaptive and advanced intelligence abilities of context-awareness, cross frequency coupling, and feature binding. To mimic these adaptive cognitive abilities, we design and simulate a novel, hardware-based adaptive oscillatory neuron using a lattice of magnetic skyrmions. Charge current fed to the neuron reconfigures the skyrmion lattice, thereby modulating the neuron’s state, its dynamics and its transfer function “on the fly.” This adaptive neuron is used to demonstrate the three cognitive abilities, of which context-awareness and cross-frequency coupling have not been previously realized in hardware neurons. Additionally, the neuron is used to construct an adaptive artificial neural network (ANN) and perform context-aware diagnosis of breast cancer. Simulations show that the adaptive ANN diagnoses cancer with higher accuracy while learning faster and using a more compact and energy-efficient network than a nonadaptive ANN. The work further describes how hardware-based adaptive neurons can mitigate several critical challenges facing contemporary ANNs. Modern ANNs require large amounts of training data, energy, and chip area, and are highly task-specific; conversely, hardware-based ANNs built with adaptive neurons show faster learning, compact architectures, energy-efficiency, fault-tolerance, and can lead to the realization of broader artificial intelligence. 
    more » « less
  2. Abstract Recent works suggest that striking a balance between maximizing idea stimulation and minimizing idea redundancy can elevate novel idea generation performances in self-organizing social networks. We explore whether dispersing the visibility of high-performing idea generators can help achieve such a trade-off. We employ popularity signals (follower counts) of participants as an external source of variation in network structures, which we control across four conditions in a randomized setting. We observe that popularity signals influence inspiration-seeking ties, partly by biasing people’s perception of their peers’ novel idea-generation performances. Networks that partially disperse the top ideators’ visibility using this external signal show reduced idea redundancy and elevated idea-generation performances. However, extreme dispersal leads to inferior performances by narrowing the range of idea stimulation. Our work holds future-of-work implications for elevating idea generation performances of people. 
    more » « less
  3. Abstract We report a biophysical mechanism, termed cryocampsis (Greek cryo-, cold, + campsis, bending), that helps northern shrubs bend downward under a snow load. Subfreezing temperatures substantially increase the downward bending of cantilever-loaded branches of these shrubs, while allowing them to recover their summer elevation after thawing and becoming unloaded. This is counterintuitive, because biological materials (including branches that show cryocampsis) generally become stiffer when frozen, so should flex less, rather than more, under a given bending load. Cryocampsis involves straining of the cell walls of a branch’s xylem (wood), and depends upon the branch being hydrated. Among woody species tested, cryocampsis occurs in almost all Arctic, some boreal, only a few temperate and Mediterranean, and no tropical woody species that we have tested. It helps cold-winter climate shrubs reversibly get, and stay, below the snow surface, sheltering them from winter weather and predation hazards. This should be advantageous, because Arctic shrub bud winter mortality significantly increases if their shoots are forcibly kept above the snow surface. Our observations reveal a physically surprising behavior of biological materials at subfreezing temperatures, and a previously unrecognized mechanism of woody plant adaptation to cold-winter climates. We suggest that cryocampsis’ mechanism involves the movement of water between cell wall matrix polymers and cell lumens during freezing, analogous to that of frost-heave in soils or rocks. 
    more » « less
  4. Abstract Neural, physiological, and behavioral signals synchronize between human subjects in a variety of settings. Multiple hypotheses have been proposed to explain this interpersonal synchrony, but there is no clarity under which conditions it arises, for which signals, or whether there is a common underlying mechanism. We hypothesized that cognitive processing of a shared stimulus is the source of synchrony between subjects, measured here as intersubject correlation (ISC). To test this, we presented informative videos to participants in an attentive and distracted condition and subsequently measured information recall. ISC was observed for electro-encephalography, gaze position, pupil size, and heart rate, but not respiration and head movements. The strength of correlation was co-modulated in the different signals, changed with attentional state, and predicted subsequent recall of information presented in the videos. There was robust within-subject coupling between brain, heart, and eyes, but not respiration or head movements. The results suggest that ISC is the result of effective cognitive processing, and thus emerges only for those signals that exhibit a robust brain–body connection. While physiological and behavioral fluctuations may be driven by multiple features of the stimulus, correlation with other individuals is co-modulated by the level of attentional engagement with the stimulus. 
    more » « less
  5. Abstract We analyze social media activity during one of the largest protest mobilizations in US history to examine ideological asymmetries in the posting of news content. Using an unprecedented combination of four datasets (tracking offline protests, social media activity, web browsing, and the reliability of news sources), we show that there is no evidence of unreliable sources having any prominent visibility during the protest period, but we do identify asymmetries in the ideological slant of the sources shared on social media, with a clear bias towards right-leaning domains. These results support the “amplification of the right” thesis, which points to the structural conditions (social and technological) that lead to higher visibility of content with a partisan bent towards the right. Our findings provide evidence that right-leaning sources gain more visibility on social media and reveal that ideological asymmetries manifest themselves even in the context of movements with progressive goals. 
    more » « less
  6. Abstract Divergent hosts often associate with intracellular microbes that influence their fitness. Maternally transmitted Wolbachia bacteria are the most common of these endosymbionts, due largely to cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-infected males. Closely related infections in females rescue CI, providing a relative fitness advantage that drives Wolbachia to high frequencies. One prophage-associated gene (cifA) governs rescue, and two contribute to CI (cifA and cifB), but CI strength ranges from very strong to very weak for unknown reasons. Here, we investigate CI-strength variation and its mechanistic underpinnings in a phylogenetic context across 20 million years (MY) of Wolbachia evolution in Drosophila hosts diverged up to 50 MY. These Wolbachia encode diverse Cif proteins (100% to 7.4% pairwise similarity), and AlphaFold structural analyses suggest that CifB sequence similarities do not predict structural similarities. We demonstrate that cifB-transcript levels in testes explain CI strength across all but two focal systems. Despite phylogenetic discordance among cifs and the bulk of the Wolbachia genome, closely related Wolbachia tend to cause similar CI strengths and transcribe cifB at similar levels. This indicates that other non-cif regions of the Wolbachia genome modulate cif-transcript levels. CI strength also increases with the length of the host’s larval life stage, presumably due to prolonged cif action. Our findings reveal that cifB-transcript levels largely explain CI strength, while highlighting other covariates. Elucidating CI’s mechanism contributes to our understanding of Wolbachia spread in natural systems and to improving the efficacy of CI-based biocontrol of arboviruses and agricultural pests globally. 
    more » « less
  7. Abstract Intertidal sands are global hotspots of terrestrial and marine carbon cycling with strong hydrodynamic forcing by waves and tides and high macrofaunal activity. Yet, the relative importance of hydrodynamics and macrofauna in controlling these ecosystems remains unclear. Here, we compare geochemical gradients and bacterial, archaeal, and eukaryotic gene sequences in intertidal sands dominated by subsurface deposit-feeding worms (Abarenicola pacifica) to adjacent worm-free areas. We show that hydrodynamic forcing controls organismal assemblages in surface sediments, while in deeper layers selective feeding by worms on fine, algae-rich particles strongly decreases the abundance and richness of all three domains. In these deeper layers, bacterial and eukaryotic network connectivity decreases, while percentages of clades involved in degradation of refractory organic matter, oxidative nitrogen, and sulfur cycling increase. Our findings reveal macrofaunal activity as the key driver of biological community structure and functioning, that in turn influence carbon cycling in intertidal sands below the mainly physically controlled surface layer. 
    more » « less
  8. Abstract The prehistory of the people of Uruguay is greatly complicated by the dramatic and severe effects of European contact, as with most of the Americas. After the series of military campaigns that exterminated the last remnants of nomadic peoples, Uruguayan official history masked and diluted the former Indigenous ethnic diversity into the narrative of a singular people that all but died out. Here, we present the first whole genome sequences of the Indigenous people of the region before the arrival of Europeans, from an archaeological site in eastern Uruguay that dates from 2,000 years before present. We find a surprising connection to ancient individuals from Panama and eastern Brazil, but not to modern Amazonians. This result may be indicative of a migration route into South America that may have occurred along the Atlantic coast. We also find a distinct ancestry previously undetected in South America. Though this work begins to piece together some of the demographic nuance of the region, the sequencing of ancient individuals from across Uruguay is needed to better understand the ancient prehistory and genetic diversity that existed before European contact, thereby helping to rebuild the history of the Indigenous population of what is now Uruguay. 
    more » « less
  9. Abstract The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development. Here, we report the use of synthetic hydrogels with tunable stiffness and porosity to assess physical effects of the substrate on biofilm development. Using time-lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness, unlike what is found on traditional agar substrates. Using traction force microscopy-based techniques, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium, and that the magnitude of these forces also increases with increasing substrate stiffness. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology. 
    more » « less
  10. Abstract While there have been efforts to supply off-grid energy in the Amazon, these attempts have focused on low upfront costs and deployment rates. These “get-energy-quick” methods have almost solely adopted diesel generators, ignoring the environmental and social risks associated with the known noise and pollution of combustion engines. Alternatively, it is recommended, herein, to supply off-grid needs with renewable, distributed microgrids comprised of photovoltaics (PV) and in-stream generators (ISG). Utilization of a hybrid combination of renewable generators can provide an energetically, environmentally, and financially feasible alternative to typical electrification methods, depending on available solar irradiation and riverine characteristics, that with community engagement allows for a participatory codesign process that takes into consideration people’s needs. A convergent solution development framework that includes designers—a team of social scientists, engineers, and communication specialists—and communities as well as the local industry is examined here, by which the future negative impacts at the human–machine–environment nexus can be minimized by iterative, continuous interaction between these key actors. 
    more » « less